Introduction: oxygen transported to the tissues can

0 Comment


Perinatal asphyxia is a
serious problem globally, and it is a common cause of neonatal mortality and
long-term morbidity. Data from National Neonatal Perinatal Database 1 suggest
that perinatal

We Will Write a Custom Essay Specifically
For You For Only $13.90/page!

order now

asphyxia contributes to
almost 20% of neonatal deaths in India. Of the 1.2 million neonatal deaths in
India every year, 300,000 – 350,000 infants die due to perinatal asphyxia
mostly within first 3 days of life 2.

Perinatal asphyxia can
cause severe hypoxic-ischemic damages in the organs of neonates and cause
severe long-term consequences or fatal complications. So, predicting the
prognosis of asphyxia for prevention and targeted treatment before the
incidence of complications should be given the high priority in neonatology and
pediatrics.(3,4) Thus, a reliable marker is required to predict the hospital
stay and the prognosis of neonates with perinatal asphyxia.(5)

there is no effective indicator for prediction of perinatal asphyxia although a
combination of different methods and markers could help in the diagnosis of
perinatal asphyxia 6. Nucleated red blood
cells (NRBCs), or erythroblast, are the premature forms of erythrocytes that
are commonly found in newborn’s blood. Any condition that reduces the quantity
of oxygen transported to the tissues can cause an increase in the rate of RBC

has recently been suggested that the increase in NRBC count in the umbilical
vein of newborns can be considered a sign of birth asphyxia 7. In healthy newborns,
NRBC count is reduced by half 12 h after birth, and there are only 20–30
NRBCs/m3 48 h after birth. Although on the third or fourth day of birth, NRBCs
are not seen in the blood circulation, but in preterm newborns, small amounts
of NRBCs may be seen in the first week of life 8–11. On the other hand,
tissue hypoxia results in increased levels of erythropoietin and erythrocytes.
NRBC count reflects high production of erythropoietin; it means that
erythropoietin stimulates fetal hematopoietic system, mainly in bone marrow,
which increases the production of RBCs 12–13. Increase in NRBC count is often
due to prematurity, ABO or RH blood incompatibility, increase in hematopoiesis
followed by chronic diseases, maternal diabetes, preeclampsia, fetal anemia,
intrauterine infections, chorioamnionitis and acute or chronic asphyxia








Review of Literature:

nucleated red blood cells (nRBCs) are rarely found circulating in older
children,(18) they are commonly seen in the blood of newborns. They are
primarily produced in the fetal bone marrow in response to erythropoietin and
are stored in the marrow as precursors to reticulocytes and mature
erythrocytes. Many acute and chronic stimuli cause increases in the number of
circulating nRBCs from either increased erythropoietic activity or a sudden
release from the marrow storage pools.

are present in the placental vessels through the first half of pregnancy, but
are uncommon later in pregnancy and are usually absent or present only in small
numbers at term. The finding of numerous nRBCs in the term placenta is
non-specific and may indicate acute or chronic fetal hypoxia, maternal
diabetes, fetal anaemia, or congenital TORCH infections (toxoplasma, other
viruses, rubella, cytomegalovirus, herpes).(19-24)

diagnosis of increased nucleated red bloods cells in the fetus and newborn

Physiological Labour and vaginal births
Preterm newborns Post-term newborns

Increased erythropoiesis Chronic hypoxia
Growth restriction Maternal pre-eclampsia Maternal smoking Anaemia Blood loss
Haemolysis—ABO or Rh isoimmunization, other Maternal diabetes Other Leukaemia
Down’s syndrome TORCH infections

Acute stress release Acute hypoxia Subacute
hypoxia Chorioamnionitis

 Postnatal hypoxia Cyanotic heart disease
Pulmonary failure V. Idiopathic TORCH, Toxoplasma, other viruses, rubella,
cytomegalovirus, herpes.

have consistently shown decreasing nRBCs as the gestational age increases,
except that post-term infants have higher counts than term infants.(25-29)
Small premature newborns may normally have up to 10 000 nRBCs/mm3 . In the
normal neonate, nRBCs are rapidly cleared from the bloodstream after
birth.(30,31,32) By 12 hours of age, the counts fall by about 50%, and by 48
hours only 20–30 nRBCs/mm3 are found. In healthy term newborns, virtually no
nRBCs are found after the third or fourth day of life, although they may
persist in small numbers up to 1 week in preterm newborns.(25,28)

Boskabadi et al 2016 (33)
conducted a study on sixty-three neonates with asphyxia and followed them  up for two years. NRBC-level was determined
per 100 white-blood-cells (WBC). After discharge, follow-up of asphyxiated
infants was performed using Denver II test at 6, 12, 18 and 24 months. They
demonstrated that NRBC/100 WBC and absolute NRCB count can be used as
prognostic marker for neonatal asphyxia, which in combination with the severity
of asphyxia could indicate high infant mortality, and complications of

et al 2003(6)  conducted a study to
determine normal level of nucleated red blood cells (NRBC) per 100 white blood
cells (WBC) in cord blood of term non-asphyxiated newborns and to investigate
variations in NRBC counts in perinatal asphyxia.The study showed high NRBC
count in umbilical blood correlated with poor early neonatal outcome.The level
of NRBC per 100 WBC correlates both with acute as well as chronic antepartum
asphyxia. It  further concluded that NRBC
can be used as a reliable index of early neonatal outcome.

Goel et al  2013 (34) conducted a case control study on
50 asphyxiated and 50 normal newborns  to
investigate variations in nucleated red blood cell (NRBC) in blood associated
with perinatal asphyxia and its relationship to both the severity and short
term prognosis of asphyxia.the study showed there was a significant (P 


I'm Rick!

Would you like to get a custom essay? How about receiving a customized one?

Check it out